

St. Paul's Mission School

5 Scott Lane, Kolkata 700009

First Terminal Examination 2021-2022

							
		Writing Starts	at 09:0				
		Uploading of	at 11: PDF by 11:	ISAIVI BOAM			
Multiple	^c hoice Questions	Choose the correct an	swer for the f		lestions from the ontions given		
wattple	Section 4						
		(3)	2 marks)				
Question 1	If Runka opened	a recurring denosit acc	ount in a hank	r and deno	sited Rs. 900 per month for $2.\%$		
vors t	hen total money	deposited in the accourt	ount in a bank				
years, t			0000	(d) non	a of the these		
a)					e of the these		
Question 2	IT X EN THEN SOLU	ition set of the inequation	$\int x - 2 \le 8$	i IS	N 6.1		
a)	{ 0,1,2,3}	b) {0,1,2}	c {1,2,3}		d) none of these.		
Question 3	: If $x \notin W$, then solutions of the solution of the second secon	ution set of $4x + 11 \ge 2$	2x + 8 is				
a)	{-1,0,1,2,}	b) {0,1,2,3,}	c) {-2,-1,0,1,2	,}	d) {1,2,3,4}		
Question 4	: If $x \notin w$, then the	e solution set of $3x - 2$	$\geq 4x - 5$ is				
a)	{1,2,3}	b) { ···-2,-1,0,1,2,3}	<i>e</i>) {0,1,2,3}		d) {x:x€R,x≤3}		
Question 5	: If $x \notin I$, then the	solution set of $1 < 3x$ -	$+5 \le 11$ is				
a)	{-2,-1,0,1}	b) {-1,0,1,2}	c) {-1,0,1}		d) none of these.		
Question 6	The value(s) of	k for which the quadrati	c equation 2	$x^2 - kx + $	k=0 has equal roots are		
a)	0 only	b) 4	<i>c</i>) 0,8		d) 8 only		
Question 7	If the equation 2	2x^2-6x+p=0 has real an	d different roo	ots, then th	e values of p are given by		
a)	P > 9/2	b) $p \le 9/2$	clp <	< 9/2	d) $p \ge 9/2$		
Question 8: The quadratic equation $2x^2 - \sqrt{5}x + 1 = 0$ has							
a) Two distinct real roots 🌶 no real roots c) more than two real roots d) tow equal roots.							
Question 9: If $\begin{bmatrix} x+3 & 4 \\ x+4 & y \end{bmatrix} = \begin{bmatrix} 5 & 4 \\ 2 & y \end{bmatrix}$, then the value of x and y are							
a)	7,2	ت رو رو بر ۲ (م) 2,7	c) -2	,7	d) 3,2		
Question 1	0: Two ma	trices A of order mxn a	nd B of order j	oxq . If mu	Itiplication is possible then the order		
of the r	esulting matrix w	vill be					
a)	mxp	b) <i>nxp</i>	c) <i>nx</i>	cq	d mxq		
Question 1	1: In triana	gles ABC and DEF / B	$= \angle E \cdot / F =$	$= \angle C$ and	AB = 3DE, then two triangles are		
	Congruent but r	not similar b) neither sin	nilar nor cong	ruent c) c	ongruent as well as similar durimilar		
~)							

but not congruent.Question 12:D and E are the points on the sides AB and AC respectively such that DE||BC, AD=2cm

,BD=3cm, BC=7.5. Then the length of DE is

a) 2.5cm	b) 5cm	c) 6cm	a) 3cm				
Question 13:	If the areas of two similar triang	gles are in the ratio 9:	4, then their corresponding sides are in				
the ratio							
a) 9:4	>/ 3:2	c) 2:3	d) 16:81				
Question 14:	If triangles ABC and PQR are sin	nilar, BC=8cm and QR	=6cm, then the ratio of the areas of				
triangles A	BC and PQR is						
a) 8:6	b) 3:4	c) 16:9	d) 9:1 6				
Question 15:	The 15th term from the end of	the AP 7,10,13,,130	is				
a) 37	b) 43	c) 40	H 58 6 8				
Question 16:	If the common difference of an	AP is 6, then the diffe	erence between 18th and 13th term is				
a) 5	b) 20	c)25	df 30				
Question 17:	If 1st term of an AP is -5 and co	mmon difference is 2	then the sum of its 1st 6 terms is				
A) O	b) 5	c) 6	d) 15				
Question 18:	The roots of the quadratic equa	tion $x^2 - 3x - 9 = 0$) are 4.854 , -1.854 . The roots correct				
to two significa	nt figures are						
a) 4.85,-1	.85 b) 4.8,-1.8	c) 4.9,-1.9	d) none of these.				
Question 19:	A quadratic equation can have						
a) More t	han two roots b) one root	exactly tw	o roots d) all of these				
Question 20:	Which of the following stateme	nt is not true?					
a) All ider	ntity matrices are square matrix.	b) All diagonal matrix	x is square matrix. c) The number of				
rows a	nd columns of a rectangular mati	rix are different.	If the product of two matrices AB				
possibl	e then BA is also possible.	6					
Question 21:	The percentage share of CGST c	of total GST for an intr	a-state sale of an article is				
a) 100%	b) 25%	50%	d) 75%				
Question 22:	The sum of first n natural numb	er is given by					
a) $\frac{n(n-1)}{2}$	b) $\frac{n(n+1)}{2}$	c) n^2 d) $2n^2$	n				
Question 23: A trader bought x number of articles at Rs. 600 and sold each of them at Rs. 2 more than							
what he paid for it. The S.P of each article is							
a) $\frac{600}{x}$	b) $\frac{602}{x}$	() $\frac{600}{x} + 2$ d) $\frac{6}{x}$	<u>00</u> +2				
Question 24:	Which of the following stateme	nt is not true?					
a) Two co	ngruent triangles are similar) Two similar triang	les are congruent. c) The shape of Two				
similar triangles is same. d) The area of two similar triangles are not always same.							
Question 25: If <i>a</i> : <i>b</i> : <i>c</i> : <i>d</i> then <i>ac</i> : <i>: b</i> : <i>d</i> . This property of proportion is called							
a) Inverte	ndo b) alternendo	c) dividendo d) ac	ddendo.				
Question 26:	If the discriminant of a quadrati	ic equation is greater	than zero and is a perfect square, then				
the roots are							
a) Irratior	nal by rational	c) imaginary d) eo	qual.				

Question 27: **IGST** means a) Inter State Goods and Services Tax b) Intra State Goods and Services Tax chintegrated Goods and Services Tax. d) Input Goods and Services Tax. Question 28: If 2x + 3 is a factor of a polynomial, f(x) then the remainder is given by b) f(3/2) If $x \begin{bmatrix} 2 & 1 \\ -3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 \end{bmatrix}$ then order of matrix X is a) f(2/3)Question 29: b) 2x1 z) 1x2 c) 2x2 d) none of these Question 30: Two matrices will be compatible for multiplication if a) Their order must be the same. b) The number of rows of two matrices must be the same c) The number of columns of two matrices must be the same. *A* none of these. Unit matrix of order 2 is Question 31: a) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ b) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ **(1)** $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ d) none of these. Question 32: 2x+7 is a polynomial of degree b) one a) Two c) 0 d) none of these Section B [24 marks] Question 33: The price of a coat is Rs. 885 inclusive of tax (under GST) at the rate of 18% on its listed price. The list price of the coat is b Rs. 750 c) 1020 d) none of these. a) Rs. 135 Mr. Das deposit Rs. 1000 per month for 2 years in a recurring deposit account. If the rate of Question 34: interest is 6%p.a. then interest earned by him on this account is d) none of these. X Rs.1500 b) Rs. 1200 c) Rs.2000 Mrs. Sharma deposited Rs. 150 per month in bank for 8 months under recurring deposit Question 35: scheme. If the rate of interest p.a. is 8% then the amount she gets on maturity is b) Rs.1236 a) Rs.1200 c) Rs.1536 d) none of these. **Question 36:** Rishon deposited Rs. 2500 per month in a recurring deposit account for two years. If he receives Rs. 67500 at the time of maturity then total interest earned by him is b) Rs.7500 a) Rs.5250 c) Rs. 6000 d) none of these If k - 1, k + 1 and 2k + 3 are in AP, then the value of k is **Question 37:** b12 c) 4 d) -2 a) 0 The numbers of two-digit numbers which are divisible by 3 is Question 38: a) 33 b) 31 d) 29 If $A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, then $A^2 =$ b) c) l d) 2 If $A = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$ and $A^2 = pA$, then value of p is Question 39: d) 2A a) A Question 40: a) 4 c) -4 d) -2 If $\frac{1}{2}$ is a root of the equation $4x^2 - 4kx + k + 5 = 0$, then the value of k is Question 41: b) -6 a) -3 C O d) 3

Question 4	2: The roots of th	e equation x^2 –	3x - 10 = 0	are			
21	-2,5 b) 2,-5		c) -2,-5	d) 2,5			
Question 4	3: In an <i>A</i> . <i>P</i> , <i>Sn</i>	= n(4n + 1) th	en common dif	fference is			
a)	5 🏓 8		c)13	d) 21			
Question 4	4: If $x \in \mathbb{R}$, then the	ne solution set of	$x - 3 \le 3 - 2x$	< 9 is			
a)	$\{x: x \notin \mathbb{R}, -3 \le x < 3\}$	b) { <i>x</i> : <i>x</i> € <i>R</i> , −3	$< x \le 3$	c) { <i>x</i> : <i>x</i> € <i>R</i> , −3	$\leq x \leq 3$	d)	
	${x: x \in \mathbb{R}, -3 < x < 3}$						
Section C							
		[2	4 Marks]				
Question 4	5: A shopkeeper	bought a T.V fror	n a distributor	at a discount of 2	0% of the listed	price of Rs.	
4000. T	he shopkeeper sales the	e T.V to a consun	ner at the listed	d price. If the sale	s are intra- state	and the rate	
of GST	is 12 %, then choose the	e correct answer	from the optio	ns given below-			
i)	The selling price of the	T.V including tax	k by the distribu	utor is –			
	a) Rs.3200	(b) Rs.4480	(c) Rs	.3584	(d)Rs. 3392		
ii)	The tax under GST paid	l by the shopkee	per to the cent	ral government is	; —		
	(a)Rs.48	(b)Rs. 240	(c) Rs	.192	(d)Rs. 60		
iii)	The tax received by the	e State Governme	ent is –				
	a) Rs. 192	(b) Rs.96	(c)Rs.	240	(d)Rs. 22		
iv)	The price including tax (under GST) of the T.V paid by the consumer is –						
	a) Rs. 3584	(b) Rs. Rs. 4480) (c)Rs.	3832	(d) Rs.383		
Question 4	6:						
i)	If a,12,16 and b are in (continued propo	rtion then the	values of a and b	are		
	a) 9,21	b) 9,64/3	c) 9 <i>,</i> 8		d) 8,9		
ii)	The fourth proportion	to 3,4,5 is					
	a) 6	b) 20/3	c) 15/	/4	d) 12/5		
iii)	The third proportion	to 25/4 and 5 is					
	a) 15/2	b) 3	e) 4	d) non	e of the above		
iv)	The mean proportiona	l between ½ and	128 is				
	8	b) 16	c) 32		d) 64		
Question 4	7:						
i)	When $2x^3 - 7x^2 + 3$ i	s divided by x –	2 then remain	der is			
	a) 10	b) 0	9-19		d) -11		
ii)	If on dividing $4x^2 - 3k$	xx + 5 by $x + 2$ t	he remainder i	s -3 then the valu	e of <i>k</i> is		
	-4	b) 4	c) 3		d) -3		
iii)	If x+1 is a factor of 3x [^]	3+k+7x+4 then th	he value of k is				
	a) O	b)-1	c) 10		d) 6		

iv)	The value of "a" when two polynomials $ax^3 + 3x^2 - 9$ and $2x^3 + 4x + a$, leaves the same							
	remainder when divided by $x + 3$ is							
	a) 5	t	o) 4	c) 3		d) 1		
Question 4	8: 1	n th term of an A	A.P is given by 3	3 + 4n.				
i)	The com	The common difference of the A.P is						
	a) 11	k	o) 8	c)7		d) 4		
ii)	1st term	of the A.P is						
	a) 3		b) 4	7		d) 11		
iii)	First thre	e terms are						
	a) 3,7,1	.1 k) 4,8,12		7,11,15	d) none of these.		
iv)	The sum	of 1st 10 terms	is					
	a) 250	k	o) 500		c)1000	d) 200		
Question 4	stion 49: The speed of a car is $x km/hr$. By increasing the speed of the car by $10 km/hr$ the time							
taken t	o cover a	distance of 72kn	n is reduced by	36 minu	ites.			
i)	The time	taken to cover t	he distance at	original	speed is			
	a) $\frac{36}{x}$	لم	$\frac{72}{x}$		c) $\frac{x}{36}$	d) $\frac{x}{72}$		
ii)	The time	taken to cover t	he distance at	increase	d speed is			
	a) $\frac{36}{x-10}$	k	b) $\frac{72}{x}$	•	$rac{72}{x+10}$	d) $\frac{x+10}{72}$		
iii)	The quad	The quadratic equation formed is						
	a) $x^2 - 10x + 1200 = 0$ $x^2 + 10x - 1200 = 0$ c) $x^2 + 10x + 1200 = 0$ d) $x^2 + 10x + 10x + 1200 = 0$							
	1200	0 = 0	•					
iv)	The origi	nal speed of the	car is					
	a) 40kn	n/hr	ѝ 30km/hr		c) 60km/hr	d) 20km/hr		
Question 5	0: /	ABC is a right-ang	gled triangle wi	th	$C = 90 \circ . D$ is any poi	nt on AB and DE is		
perpen	perpendicular to AC. If $AC = 13cm$, $BC = 5cm$ and $AE = 4cm$ then							
i)	The leng	th of DE is						
	a) 13/3		5/3		c) 13/5	d) 5/13		
ii)	The leng	th of AD is						
	a) 13/3		b) 5/3		c) 13/5	d) 5/13		
iii) Area of triangle ADE: area of triangle ABC is								
	a) <u>1:3</u>	k	o) 2:3		c) 3:1	d) 3:2		
iv)	Area of t	riangle ADE: are	a of quadrilater	al BCED	is			
	a) 8:1	k	o) 1:9		c) 1:8	9:1		

¥¥¥¥¥¥¥¥¥¥¥¥